
EXERCISE 1: GEM by hands

Using the Gauss elimination method, solve, by pencil and paper, the
linear system below; then check by Matlab the solution. 4 0 12

−2 6 −3
1 2 5

x1x2
x3

 =

0
0
1

Same as before, with−5 3 4

10 −8 −9
15 1 2

x1x2
x3

 =

1
5
1

Same as before, with 1 −3 4

−1 5 −3
4 −8 23

x1x2
x3

 =

 12
−12
58

1 / 7

EXERCISE 1: solution 1st system

] - nothing to do →

i

K' ¥

.tl#tn......I] - res - In .

→

4 O 12

I
:H¥.H¥n
€) →

rz
-

'

zr.no

l:÷÷n÷ii:H÷÷÷÷
.

therefore Xs - 1
,

Xz =

- I
,

X
,

=
- 3

2 / 7

EXERCISE 1: solution 2nd system

3 / 7

EXERCISE 1: solution 3rd system

4 / 7

EXERCISE 2: Matlab implementation

Write a function that, given as input an upper triangular matrix U
and a vector b, solves the system Ux = b using the backsubstitution
method and test it on the system3 −1 2

0 1 −5
0 0 2

x1x2
x3

 =

 4
−4
2

Write a function that, given as input a matrix A and a vector b,
solves the system Ax = b using Gaussian elimination (without
pivoting and with pivoting) and test it on the two systems: 4 0 12

−2 6 −3
1 2 5

x1x2
x3

 =

0
0
1

 ;

2 2 0
1 1 −1
3 −2 4

x1x2
x3

 =

4
1
5

Write a function that, given as input a matrix A, returns the L and U
factors of the LU factorization without pivoting.

5 / 7

EXERCISE 3: solving linear systems and more...

Using the LU factorization function above, write a function that returns
the inverse of an input matrix.
Modify the above function to compute the determinant of an input
matrix A, and test it on the matrices in the previous slide.
Solve a system Ax = f with user-made functions above, where f arbitrary
chosen and

A =

2 −1 0 . . . 0
−1 2 −1 . . . 0

0
. . .

. . .
. . . 0

... −1 2 −1
0 0 . . . −1 2

In particular, compute x with either the GEM/LU methods implemented
above and by explicitly computing x = A−1f (i.e., computing A−1 with
the function above). Using the Matlab commands tic and toc, measure
the time required by the two aproaches to compute the solution. The
matrix size should be chosen large enough so that the time difference is
relevant.

6 / 7

EXERCISE 4: sparse matrices (optional)

When the vast majority of a matrix A entries are zero, it is convenient to store only the
nonzero values (and their position) in the memory. The Matlab function sparse can
convert a non-sparse (dense) matrix into a sparse one.

Let Au = f be the matrix in the previous slide. Using the Matlab command whos,
compare the memory usage when A is stored as dense and as sparse, for a large
enough matrix size. Compare also the time spent to solve the system (use Matlab
LU factorisation, and Matlab solver to invert the trinagular systems).

Consider a similar system Bu = f , where

B =

2 −1 −1 . . . −1
−1 2 0 . . . 0

−1 0
. . .

...
... 2 0

−1 0 . . . 0 2

Note that A and B have the same sparisity, i.e. the same number of nonzero
entries. Compare again the memory and solution time required when B is stored as
sparse or as dense. Do you observe any difference with the previous case? If yes,
why? You might want to compare the sparsity pattern (Matlab command spy) of
the L U factors.

7 / 7

