EXERCISE 1: GEM by hands

- Using the Gauss elimination method, solve, by pencil and paper, the linear system below; then check by Matlab the solution.

$$
\left[\begin{array}{ccc}
4 & 0 & 12 \\
-2 & 6 & -3 \\
1 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Same as before, with

$$
\left[\begin{array}{ccc}
-5 & 3 & 4 \\
10 & -8 & -9 \\
15 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
5 \\
1
\end{array}\right]
$$

- Same as before, with

$$
\left[\begin{array}{ccc}
1 & -3 & 4 \\
-1 & 5 & -3 \\
4 & -8 & 23
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
-12 \\
58
\end{array}\right]
$$

EXERCISE 1: solution 1st system

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\left.\begin{array}{ccc}
4 & 0 & 12 \\
n_{1} \\
-2 & 6 & -3 \\
1 & 2 & 5 n_{3}
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]-\begin{array}{l}
\text { nothing to } \text { do }^{1} \rightarrow \\
r_{2}+\frac{1}{2} r_{1} \rightarrow \\
r_{3}-\frac{1}{4} r_{1} \rightarrow
\end{array}} \\
& \left.\left[\begin{array}{ccc}
4 & 0 & 12 \\
0 & 6+3 \\
0 & 2 r_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \rightarrow \begin{array}{l}
\text { nothing } \longrightarrow \\
\rightarrow
\end{array}\right] \begin{array}{l}
\text { nothing } \rightarrow \\
n_{3}-\frac{1}{3} \Omega_{2} \rightarrow
\end{array} \\
& {\left[\begin{array}{lll}
4 & 0 & 12 \\
0 & 6 & +3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \simeq\left\{\begin{array}{c}
4 x_{1}+12 x_{3}=0 \\
6 x_{2}+3 x_{3}=0 \\
x_{3}=1
\end{array}\right.}
\end{aligned}
$$

therefore $x_{3}=1, \quad x_{2}=-\frac{1}{2}, \quad x_{1}=-3$

EXERCISE 1: solution 2nd system

EXERCISE 1: solution 3rd system

EXERCISE 2: Matlab implementation

- Write a function that, given as input an upper triangular matrix U and a vector b, solves the system $U x=b$ using the backsubstitution method and test it on the system

$$
\left[\begin{array}{ccc}
3 & -1 & 2 \\
0 & 1 & -5 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-4 \\
2
\end{array}\right]
$$

- Write a function that, given as input a matrix A and a vector b, solves the system $A x=b$ using Gaussian elimination (without pivoting and with pivoting) and test it on the two systems:

$$
\left[\begin{array}{ccc}
4 & 0 & 12 \\
-2 & 6 & -3 \\
1 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] ; \quad\left[\begin{array}{ccc}
2 & 2 & 0 \\
1 & 1 & -1 \\
3 & -2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right]
$$

- Write a function that, given as input a matrix A, returns the L and U factors of the $L U$ factorization without pivoting.

EXERCISE 3: solving linear systems and more...

- Using the LU factorization function above, write a function that returns the inverse of an input matrix.
- Modify the above function to compute the determinant of an input matrix A, and test it on the matrices in the previous slide.
- Solve a system $A x=f$ with user-made functions above, where f arbitrary chosen and

$$
A=\left[\begin{array}{ccccc}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & & -1 & 2 & -1 \\
0 & 0 & \ldots & -1 & 2
\end{array}\right]
$$

In particular, compute x with either the GEM/LU methods implemented above and by explicitly computing $x=A^{-1} f$ (i.e., computing A^{-1} with the function above). Using the Matlab commands tic and toc, measure the time required by the two aproaches to compute the solution. The matrix size should be chosen large enough so that the time difference is relevant.

EXERCISE 4: sparse matrices (optional)

When the vast majority of a matrix A entries are zero, it is convenient to store only the nonzero values (and their position) in the memory. The Matlab function sparse can convert a non-sparse (dense) matrix into a sparse one.

- Let $A u=f$ be the matrix in the previous slide. Using the Matlab command whos, compare the memory usage when A is stored as dense and as sparse, for a large enough matrix size. Compare also the time spent to solve the system (use Matlab LU factorisation, and Matlab solver to invert the trinagular systems).
- Consider a similar system $B u=f$, where

$$
B=\left[\begin{array}{ccccc}
2 & -1 & -1 & \ldots & -1 \\
-1 & 2 & 0 & \ldots & 0 \\
-1 & 0 & \ddots & & \vdots \\
\vdots & & & 2 & 0 \\
-1 & 0 & \ldots & 0 & 2
\end{array}\right]
$$

Note that A and B have the same sparisity, i.e. the same number of nonzero entries. Compare again the memory and solution time required when B is stored as sparse or as dense. Do you observe any difference with the previous case? If yes, why? You might want to compare the sparsity pattern (Matlab command spy) of the L U factors.

